www.6662016.com
您当前的位置:首页 > 数学 > 人教版 > 七下 > 相交线与平行线

新人教版七年级下5.2.2平行线的判定(第1课时)教学设计

www.6662016.com www.albatal-mag.com 解析:利用对顶角相等得到∠3=∠2,再由已知∠1=∠2,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行.
解:∠3=55°,AB∥CD.理由如下:∵∠3=∠2,∠1=∠2=55°,∴∠1=∠3=55°,∴AB∥CD(同位角相等,两直线平行).
方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.
变式训练:见《学练优》本课时练习“课堂达标训练”第2题
探究点二:应用内错角相等,判断两直线平行
Image 如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?
解析:根据BC平分∠ACD,∠1=∠2,可得∠2=∠BCD,然后利用“内错角相等,两直线平行”即可得到AB∥CD.
解:AB∥CD.理由如下:∵BC平分∠ACD,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴AB∥CD(内错角相等,两直线平行).
方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
探究点三:应用同旁内角互补,判断两直线平行
Image 如图,∠1=25°,∠B=65°,AB⊥AC.AD与BC有怎样的位置关系?为什么?
解析:先根据∠1=25°,∠B=65°,AB⊥AC得出∠B与∠BAD的关系,进而得出结论.
解:AD∥BC.理由如下:∵∠1=25°,∠B=65°,AB⊥AC,∴∠BAD=90°+25°=115°.∵∠BAD+∠B=115°+65°=180°,∴AD∥BC.
方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.
变式训练:见《学练优》本课时练习“课后巩固提升”第8题
探究点四:平行线的判定方法的运用
【类型一】 利用平行线判定方法的推理格式判断
Image 如图,下列说法错误的是(  )
A.若a∥b,b∥c,则a∥c
B.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥c
D.若∠3+∠4=180°,则a∥c
解析:根据平行线的判定方法进行推理论证.A选项中,若a∥b,b∥c,则a∥c,利用了平行公理,正确;B选项中,若∠1=∠2,则a∥c,利用了“内错角相等,两直线平行”,正确;C选项中,∠3=∠2,不能判断b∥c,错误;D选项中,若∠3+∠4=180°,则a∥c,利用了“同旁内角互补,两直线平行”,正确.故选C.
方法总结:解决此类问题的关键是识别截线和被截线,找准同位角、内错角和同旁内角,从而判断出哪两条直线是平行的.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
【类型二】 根据平行线的判定方法,添加合适的条件
Image 如图所示,要想判断AB是否与CD平行,我们可以测量哪些角?请你写出三种方案,并说明理由.
解析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此答题.
解:(1)可以测量∠EAB与∠D,如果∠EAB=∠D,那么根据“同位角相等,两直线平行”,得出AB与CD平行;
(2)可以测量∠BAC与∠C,如果∠BAC=∠C,那么根据“内错角相等,两直线平行”,得出AB与CD平行;
(3)可以测量∠BAD与∠D,如果∠BAD+∠D=180°,那么根据“同旁内角互补,两直线平行”,得出AB与CD平行.
方法总结:解决此类问题的关键是找准同位角、内错角和同旁内角.
变式训练:见《学练优》本课时练习“课后巩固提升”第5题

下载地址: [ 下载地址1 ]

相关下载:

  • 新人教版七年级下5.2.2平行线的判定(第2课时)教学设计
  • 《相交线与平行线》单元测试(新人教版七年级下)
  • 第五章《相交线与平行线》单元测试题(新人教版七年级下)
  • 七年级下《相交线与平行线》单元测试题
  • 新人教版七年级下《相交线与平行线》训练题
  • 新人教版七年级下《相交线与平行线》练习
  • 第五章相交线与平行线测试题及答案(一)2013年七年级下
  • 第五章相交线与平行线测试题及答案(二)新人教版七年级下
  • 七年级下《相交线与平行线》单元测试卷
  • 七年级下第五章相交线与平行线单元测试题